
[Dewangan, 3(7): July, 2014] ISSN: 2277-9655
 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology

[584-587]

IJESRT
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH

TECHNOLOGY
A Survey on Web Crawling Techniques by Emphasizing Path-mounting crawling

Prerna Dewangan

Abstract
The World Wide Web (WWW) is being prolonged by an impulsive speed. As a result, search engines

encounter many challenges such as yielding accurate and conversant results to the users, and responding them in an

appropriate timely manner. A crawler is a program that downloads and stores Web pages, often for a Web search

engine. Web crawler (also known as a Web spider or Web robot) is a program or automated script which browses the

World Wide Web crawlers are mainly used to create a copy of all the visited pages for later processing by a search

engine, which will index the downloaded pages to provide fast searches. We have concluded that the advantage with

Path-mounting crawler is that they are very effective in finding isolated resources, or resources for which no inbound

link would have been found in regular crawling.

Keywords: Web ceawling, Path-mounting crawling.

Introduction
The Internet is a vast global network allowing

people all over the world to communicate and share

information. This is a system of interlinked hypertext

documents stored on servers all over the world,

accessible through a number of protocols built on top

of the internet architecture. In order to harvest this

enormous data repository, search engines download

parts of the existing web and offer Internet users

access to this database through keyword search. One

of the main components of search engines is web

crawler. Muskesh Kumar [1] says a crawler is a

program used by search engine that retrieves Web

pages by wandering around the Internet following one

link to another. Web search engines such as Goggle,

AtlaVista provides access to the Web documents. A

search engine crawler collects web documents and

periodically revisits the pages to update the index of

the search engine. There are some reasons why we

need a web crawler:

(i) To maintain mirror sites for popular Web

sites.

(ii) To test web pages and links for valid

syntax and structure.

(iii) To monitor sites to see when their

structure or contents change.

(iv) To search for copyright infringements.

(v) To build a special-purpose index for

example, one that has some

understanding of the content stored in

multimedia files on the Web.

The remainder of this paper is organized as follows:

Section 2 provides a brief review of the Background.

Section 3 describes the Behavior of web crawler. In

Section 4, we drew the attention towards problems in

existing systems. Finally, we concluded our study

Background
There are different types of crawlers and the

different techniques used make one to consider

different issues while designing and implementing

them[2] [4] [6] [7].

(i) General-Purpose Web Crawler: -

General-purpose web crawlers collect

and process the entire contents of the

Web in a centralized location, so that it

can be indexed in advance to be able to

respond to many user queries. In the

early stage when the Web is still not very

large, simple or random crawling

method was enough to index the whole

web.

(ii) Topic-focused Web Crawling: - Topic-

Focused Web Crawling initiation was

motivated by the fact the Web is huge

with an unprecedented scaling problem,

but most people are only interested in a

small fraction of the Web. The main

objective is to only crawl on a small

fraction of the Web to discover the set of

pages covering a certain topic [2] [3] [4]

[8] [9].

http://www.ijesrt.com/

[Dewangan, 3(7): July, 2014] ISSN: 2277-9655
 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology

[584-587]

(iii) Path-ascending Crawling: - also known

as Web harvesting software, because

they’re used to “harvest” or collect all

the contents from a specific page or host.

Some crawlers intend to download as

many resources as possible from a

particular web site.

(iv) Adaptive Crawler: - It is classified as an

incremental type of crawler which will

continually crawl the entire web, based

on some set of crawling cycles. The

adaptive model used would use data

from previous cycles to decide which

pages should be checked for updates.

Adaptive Crawling can also be viewed as

an extension of focused crawling

technology.

When using the term “Web Crawler” most people

would more than likely think of the most popular site

on the web Google. However, there are also several

other large-scale crawlers such as: Microsoft Bing,

Internet Archive, Yahoo. There are also several open-

source implementations for large-scale crawling such

as: Apache Nutch1, ABot2 and Heritrix3. Majority of

the larger-­scale web crawlers are generally used as the

background processing for search engines. Indexing

and ranking pages based on their content quality and

returning the correct information and results from

search queries is a complicated and resource intensive

task – hence why they’re probably the most

appreciated in terms of web crawling. However not all

crawlers are design to cover the entire web in a

“general” fashion. Crawlers such as the Heritrix are

designed to crawl the entire web and mirror exactly

what it discovers making it a crawler that is designed

to download not only web-pages but other media types

such as images and zip archives. Although there are

open-source implementations regarding web crawling,

majority of the large-scale web crawler solutions are

“business secrets” making the competition to build an

exceptional crawler all the more difficult. Since the

web is growing an increasingly fast rate, there are

billions of web pages to process. However, the number

of URL’s pointing to these billions of web pages

greatly exceeds the number of web pages that exist,

which is why it is important to design a structurally

efficient web crawler.

Figure 1. A general overview of a web crawler’s

architecture.

As a general overview, a web crawler looks relatively

simple. High-level components include:

 Fetcher & Parser – Downloads & parses

downloaded content.

 Storage – Form of storage method for storing

URLs and any specifically crawled content.

 Queue – a queue of URLs ready to be crawled

by the crawler.

 Scheduler – a method of scheduling URLS

(can either be based on content, timeout

periods or other factors).

The functionalities of a Web crawler is given

below:

1. The crawler starts crawling with a set of

URLs fed into it, known as seed URLs.

2. The crawler downloads the page.

3. It extracts the URLs from the downloaded

page and inserts them into a queue. From

the queue the crawler again retrieves the

URL for downloading next pages.

4. The downloaded page is saved in the

repository.

5. The process continues until the crawler

stops.

Fig 2. : Flow of a crawling process.

Behavior of web crawler
The behavior of a Web crawler is the outcome of

a combination of policies:

http://www.ijesrt.com/

[Dewangan, 3(7): July, 2014] ISSN: 2277-9655
 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology

[584-587]

i. Selection policy that states which pages

to download. Large search engines cover

only a portion of the publicly available

part. As a crawler always downloads just

a fraction of the Web pages, it is highly

desirable that the downloaded fraction

contains the most relevant pages and not

just a random sample of the Web. This

requires a metric of importance for

prioritizing Web pages. The importance

of a page is a function of its intrinsic

quality, its popularity in terms of links or

visits, and even of its URL. Abitebou

[10] designed a crawling strategy based

on an algorithm called OPIC (On-line

Page Importance Computation).1 In

OPIC, each page is given an initial sum

of “cash” that is distributed equally

among the pages it points to. It is similar

to a Pagerank computation, but it is

faster and is only done in one step. An

OPIC-driven crawler downloads first the

pages in the crawling frontier with

higher amounts of “cash”. Experiments

were carried in a 100,000-pages

synthetic graph with a power-law

distribution of in-links. However, there

was no comparison with

ii. Re-visit policy that states when to check

for changes to the pages, • a politeness

policy that states how to avoid

overloading Web sites. The Web has a

very dynamic nature, and crawling a

fraction of the Web can take weeks or

months. By the time a Web crawler has

finished its crawl, many events could

have happened, including creations,

updates and deletions. From the search

engine’s point of view, there is a cost

associated with not detecting an event,

and thus having an outdated copy of a

resource. The most-used cost functions

are freshness and age[11].

Freshness: This is a binary measure

that indicates whether the local copy is

accurate or not. The freshness of a page

p in the repository at time t is defined as:

Fp(t)={ 1 if is equal to the local copy at time t and 0 otherwise

Age: This is a measure that indicates

how outdated the local copy is. The age

of a page p in the repository.

iii. Parallelization policy that states how to

coordinate distributed Web crawlers. A

Parallel crawler is a crawler that runs

multiple processes in parallel. The goal

is to maximize the download rate while

minimizing the overhead from

parallelization and to avoid repeated

downloads of the same page. To avoid

downloading the same page more than

once, the crawling system requires a

policy for assigning the new URLs

discovered during the crawling process,

as the same URL can be found by two

different crawling processes.

Problem Identification
Hence after studying various crawler

architecture we have identified some difficulties.

1. There are two important characteristics of the

Web that generate a scenario in which Web

crawling is very difficult:

a. Large volume of Web pages.

b. Rate of change on web pages.

2. A large volume of web page implies that web

crawler can only download a fraction of the

web pages and hence it is very essential that

web crawler should be intelligent enough to

prioritize download.

3. Another problem with today dynamic world

is that web pages on the internet change very

frequently, as a result, by the time the crawler

is downloading the last page from a site, the

page may change or a new page has been

placed/updated to the site.

4. Overloading websites: Crawlers can retrieve

data much quicker and in greater depth than

human searchers, so they can have a crippling

impact on the performance of a site. Needless

to say if a single crawler is performing

multiple requests per second and/or

downloading large files, a server would have

a hard time keeping up with requests from

multiple crawlers. The use of Web crawler is

useful for a number of tasks, but comes with

a price for the general community. The costs

of using Web crawlers include:

a. Network resources, as crawlers

require considerable bandwidth and

operate with a high degree of

parallelism during a long period of

time.

http://www.ijesrt.com/

[Dewangan, 3(7): July, 2014] ISSN: 2277-9655
 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 1.852

http: // www.ijesrt.com (C)International Journal of Engineering Sciences & Research Technology

[584-587]

b. Server overload, especially if the

frequency of accesses to a given

server is too high.

c. Poorly written crawlers, which can

crash servers or routers, or which

download pages they cannot handle.

d. Personal crawlers that, if deployed

by too many users, can disrupt

networks and Web servers.

Conclusion
Edifice an effective web crawler to solve our

purpose is not a difficult task, but choosing the right

strategies and building an effective architecture will

lead to implementation of highly intelligent web

crawler application. After study we have concluded

that the advantage with Path-ascending crawler is that

they are very effective in finding isolated resources, or

resources for which no inbound link would have been

found in other crawling. On the other hand the main

problem in focused crawling is that in the context of a

Web crawler, we would like to be able to predict the

similarity of the text of a given page to the query

before actually downloading the page. A possible

predictor is the anchor text of links; to resolve this

problem proposed solution would be to use the

complete content of the pages already visited to infer

the similarity between the driving query and the pages

that have not been visited yet.

References
1. Mukesh Kumar, Renu Vig Learnable

Focused Meta Crawling Through Web

International Conference on Communication,

Computing & Security [ICCCS-2012]

ELSEVIER.

2. Bidoki, Yazdani et el, “FICA: A fast

intelligent crawling algorithm”, Web

Intelligence, IEEE/ACM/WIC International

conference on Intelligent agent technology,

Pages 635-641, 2007.

3. Cui Xiaoqing Yan Chun,” An evolutionary

relevance calculation measure in topic

crawler ” CCCM 2009, ISECS International

Colloquium on Computing, Communication,

Control, and Management, 267 – 270, aug

2009.

4. Junghoo Cho, Hector Garcia-Molina,

Lawrence Page, |Efficient crawling through

URL ordering”, 7th International WWW

Conference , April 14-18, Brisbane, 1998.

5. Mukhopadhyay et al, “A New Approach to

Design Domain Specific Ontology Based

Web Crawler”, ICIT 2007, 10th International

Conference on Information Technology, 289

- 291, Dec. 2007 .

6. Peisu, Ke et el, “A Framework of deep web

crawler”, 27th Chinese Proceedings of the

27th Chinese Control Conference, Pages

582-586, July 16-18, 2008.

7. www.wikipedia.org/web_crawler , accessed

last May 12, 2010.

8. Yadav, Sharma et el, “Architecture for

parallel crawling and algorithm for change

detection in web pages”, 10th International

Conference on Information Technology,

Pages 258-264, ICIT 2007.

9. Yuan, Yin et el, “Improvement of pagerank

for focused crawler”, 8th ACIS International

Conference on Software Engineering,

Artificial Intelligence, Networking, and

Parallel/Distributed Computing, Pages 797-

802, SNPD 2007.

10. Abiteboul Serge, Mihai Preda, and Gregory

Cobena (2003). “Adaptive On-line Pag

http://www.ijesrt.com/

